La plataforma global e independiente para la comunidad SAP.

Reconocimiento de documentos e IA: ¿espectacular o impresionante?

Las altas tasas de automatización en la captura de documentos aún no son la norma. Un nuevo método basado en Deep Learning da un paso más hacia el futuro.
Michael Diez, Esker
28 de noviembre de 2019
Columna AI
avatar
Este texto ha sido traducido automáticamente del alemán al español.

Leer y utilizar la información y los datos de los documentos no supone un gran reto para nosotros como humanos. Somos capaces de clasificar y separar fácilmente una pila de documentos diferentes en función de su disposición y de capturar toda la información necesaria.

Para las soluciones de software, este procesamiento es cualquier cosa menos mundano. La extracción eficaz de información de los documentos empresariales entrantes, como los pedidos de compra, es crucial para las empresas que se enfrentan a innumerables documentos cada día.

Sobre todo porque el escaneado y la captura de documentos son mundos distintos. Cuando se escanea un documento, se almacena digitalmente en el ordenador. Ahí se detiene el proceso.

El expediente está digitalizado, pero los usuarios no pueden hacer gran cosa con la información contenida en el documento. Sin embargo, esta información es muy valiosa y las empresas la necesitan para utilizarla y procesarla posteriormente en su sistema SAP.

Por lo tanto, es esencial establecer un software o proceso para la captura de documentos de contenido. Pero esto no es ni mucho menos el final de la tarea.

A pesar de la constante mejora de las tecnologías, la exhaustiva corrección semántica de la extracción de datos sigue siendo un reto, especialmente cuando se analiza el contenido de las tablas para reconocer los artículos pedidos o facturados, ya que los documentos suelen tener estructuras complejas y ambiguas.

Se puede confiar en procesos de reconocimiento similares al reconocimiento facial. En combinación con un gran número de plantillas de diseño y un aprendizaje automático continuo, se pueden generar altos índices de automatización para el reconocimiento y la captura de documentos como pedidos o facturas.

Este método puede completarse con una extracción inteligente del contenido de las tablas que vaya más allá del mero reconocimiento de las estructuras físicas.

Se trata de un enfoque basado en Deep Learning que permite reconocer posiciones en diferentes disposiciones que no necesariamente se tienen en cuenta en el reconocimiento puro de estructuras o no se enseñan al algoritmo de antemano.

El nuevo enfoque, basado en Deep Learning, entrena el algoritmo utilizado con una gran cantidad de datos reales procesados, que se anonimizan por motivos de protección de datos y se ponen a disposición de una red neuronal.

Este algoritmo es ahora capaz de generar elevadas tasas de captura incluso para la captura inicial de pedidos o facturas gracias a la "experiencia" y a la red correspondientemente amplia.

Es posible reconocer no solo texto y números, sino también contenidos complejos de tablas en pedidos iniciales. El aprendizaje profundo como subconjunto de la inteligencia artificial ayuda a aumentar considerablemente la productividad y la eficiencia operativa.

El nuevo método de reconocimiento es especialmente interesante porque su lógica de análisis es genérica en principio y, por tanto, puede adaptarse fácilmente a otros tipos de documentos. Se basa sólo en una pequeña parte en un tratamiento específico del texto basado en el diseño.

Estas tecnologías demuestran lo excepcionalmente eficaz que puede llegar a ser la inteligencia artificial. Actualmente se está trabajando en la próxima generación de servicios de IA que pronto podrán extraer datos precisos y fiables de pedidos, facturas y otros documentos comerciales con un simple gesto.

Lo que resulta especialmente emocionante es que los mejores enfoques de IA se adaptan excepcionalmente bien al procesamiento del lenguaje natural en el ámbito de los documentos empresariales y representan un enorme potencial de innovación en el futuro.

Por poco espectacular que nos pueda parecer a los humanos la captura de documentos, los procesos que se esconden tras el tratamiento automatizado no sólo demuestran de forma impresionante los obstáculos, sino también el rápido desarrollo técnico y los fascinantes enfoques de las soluciones: un reto impresionante de dominar.

https://e3magpmp.greatsolution.dev/partners/esker-software-gmbh/

avatar
Michael Diez, Esker

Michael Diez es Director de Cuentas en Esker.


Escriba un comentario

Trabajar sobre la base de SAP es crucial para el éxito de la conversión a S/4. 

Esto confiere al centro de competencia una importancia estratégica para los clientes actuales de SAP. Independientemente del modelo operativo de S/4 Hana, temas como Automatización, Supervisión, Seguridad, Gestión del ciclo de vida de las aplicaciones y Gestión de datos la base de las operaciones S/4.

Por segunda vez, E3 Magazine organiza una cumbre para la comunidad SAP en Salzburgo con el fin de ofrecer información exhaustiva sobre todos los aspectos del trabajo preliminar de S/4 Hana.

Lugar de celebración

En breve recibirá más información.

Fecha del acontecimiento

Miércoles 21 de mayo y
Jueves, 22 de mayo de 2025

Entrada anticipada

Disponible hasta el viernes 24 de enero de 2025
390 EUROS sin IVA

Entrada normal

590 EUROS sin IVA

Lugar de celebración

Hotel Hilton Heidelberg
Kurfürstenanlage 1
D-69115 Heidelberg

Fecha del acontecimiento

Miércoles, 5 de marzo, y
Jueves, 6 de marzo de 2025

Entradas

Entrada normal
590 EUR sin IVA
Entrada anticipada

Disponible hasta el 20 de diciembre de 2024

390 EUR sin IVA
El acto está organizado por la revista E3, publicada por B4Bmedia.net AG. Las presentaciones irán acompañadas de una exposición de socios seleccionados de SAP. El precio de la entrada incluye la asistencia a todas las ponencias de la Cumbre Steampunk y BTP 2025, una visita a la zona de exposición, la participación en el acto nocturno y el catering durante el programa oficial. El programa de ponencias y la lista de expositores y patrocinadores (socios de SAP) se publicarán en este sitio web a su debido tiempo.